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ABSTRACT 

We present HeatWave, a system that uses digital thermal 
imaging cameras to detect, track, and support user interac-
tion on arbitrary surfaces. Thermal sensing has had limited 
examination in the HCI research community and is general-
ly under-explored outside of law enforcement and energy 
auditing applications. We examine the role of thermal im-
aging as a new sensing solution for enhancing user surface 
interaction. In particular, we demonstrate how thermal im-
aging in combination with existing computer vision tech-
niques can make segmentation and detection of routine in-
teraction techniques possible in real-time, and can be used 
to complement or simplify algorithms for traditional RGB 
and depth cameras. Example interactions include (1) distin-
guishing hovering above a surface from touch events, (2) 
shape-based gestures similar to ink strokes, (3) pressure 
based gestures, and (4) multi-finger gestures. We close by 
discussing the practicality of thermal sensing for natural-
istic user interaction and opportunities for future work. 
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INTRODUCTION AND MOTIVATION 

Human-computer interface design has significant interest in 
natural interaction–i.e., systems that do not rely upon medi-
ated interaction through devices such as a mouse, keyboard, 
or stylus. This has in part been reflected by the popularity in 
touch screens and surface-based systems [1, 5, 12, 22, 29, 
34]. In an attempt to avoid instrumentation on users, ob-
jects, and surfaces (e.g., using RFID tags, visual glyphs), 

camera and imaging technologies have gained significant 
popularity for surface and gesture interaction. This has also 
largely been due to the decreasing costs, versatility, size 
and portability of modern cameras. Traditional (RGB) cam-
eras have seen considerable use in the HCI community for 
detecting hand gestures, touch points, and object recogni-
tion [7, 12, 33, 34]. The introduction of depth cameras or 

pixel-mixed devices (PMDs) provides a mechanism for 3D 
reconstruction and depth segmentation for user interfaces 
[2]. However, the use of RGB and depth cameras in HCI is 
limited by the type of information that can be extracted 

from a scene, and the speed at which information can be 
extracted. For instance, inaccuracies or gaps in gesture de-
tection often result if hand motion is too fast (using typical 
camera frame rates and real-time processing).  

Thermal imaging, which provides a pixel-level thermo-
graph of anything that is in its field of view (e.g., Figure 1), 
has largely been under-explored in the user interface com-
munity. Recent maturation and advances in solid-state im-
aging technology and embedded systems have made ther-
mal imaging more practical for consumer use in terms of 
size, cost and software access to video data.  

In this paper, we critically examine the role of thermal im-
aging as a new sensing solution for enhancing user surface 
interaction. In particular, we demonstrate how thermal im-
aging and well known computer vision techniques can 
make segmenting and detecting certain routine interaction 
techniques possible in real-time and complement or simpli-
fy algorithms for traditional RGB and depth cameras. Ex-
ample interactions include (1) distinguishing surface touch 
or target selection from hovering over surface, (2) shape-

Figure 1: A thermal imaging driven projected marking 

menu application using the residual heat traces on a tabletop 
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based gestures similar to ink strokes, (3) pressure based 

gestures, and (4) multi-finger gestures (enumerated in Fig-

ure 3). We demonstrate these in two prototype applications: 

(1) a pressure-aware drawing application that supports mul-

ti-touch and multi-user interactions, (2) a marking menu 

application using thermal traces as the “ink stroke” menu 
selection method (Figure 1). Both examples demonstrate 

the feasibility of real-time thermal traces for UI design.  

In the following sections, we briefly discuss the technique 

of thermal imaging, how it differs from standard IR-based 

cameras, and the advantages gained by using thermal imag-

ing to complement traditional RGB and depth cameras for 

surface user interactions. Next, we discuss the related work 

in surface interaction and thermal imaging, followed by 
details of our real-time computer vision approaches for ex-

tracting meaningful information from our thermal camera, 

and a collection of interaction techniques they support. Fi-

nally, we propose some challenges and future applications 

of thermal imaging that extend beyond surface interaction. 

THERMAL IMAGING 

Thermal imaging is a technique for passively constructing a 

high resolution heat map of objects appearing in a scene 

without using an external illumination source. This is ac-

complished by measuring the quantity of far-infrared (F-IR 

or long-wavelength infrared, LW-IR) radiation emitted by 

any object. Plank’s law describes that the wavelength of the 

peak of electromagnetic radiation from any object is in-

versely proportional to its absolute temperature. Objects 
that we interact with on a daily basis are near room temper-
ature and radiate mostly in the F-IR spectrum (Figure 2). 

Furthermore, the quantity of thermal, or black-body radia-

tion, emitted by an object is directly proportional to the 

fourth power of its absolute temperature, as given by the 
Stefan-Boltzmann law [15]. Therefore, by measuring the 

quantity of radiation emitted in the F-IR spectrum, a ther-

mal sensor can produce a thermographic image of anything 

in its field of view (e.g., Figure 1). 

It is important to note that thermal imaging differs from the 

more well-known “IR imaging” techniques used in the HCI 

community. Infrared light detection and night vision devic-

es use what is called reflected infrared and operate in the 

near-infrared (N-IR) spectrum. These approaches require 

an illumination source in order to reconstruct an image. N-

IR is employed in some fairly recent interactive tabletop 

surfaces [11, 34] and depth cameras. Figure 2 shows the 

visible and infrared spectra and differentiates N-IR from F-

IR. Note that we do not utilize N-IR in the present work. 

Earlier sensors found in thermal imaging cameras employed 

a gas filled lens and required refrigeration sources. Advanc-

es in semiconductor technology have enabled the develop-

ment of arrays of silicon-based bandgap detectors and pho-

to-resistive detectors, which allow for 2D imaging planes 

similar to traditional CCD cameras. Thermal cameras are 

becoming popular for home energy auditing applications, 
which has created a demand for portable thermal cameras 

that continue to reduce in size and cost.  

ADVANTAGES OF THERMAL IMAGING 

Thermal imaging provides several distinct features that ad-

dress some of the challenges faced by traditional RGB and 

depth cameras, and enables new applications which are 

difficult using traditional imaging technologies. Additional-

ly, we believe that thermal imaging can be combined with 

RGB and depth to provide more robust systems for surface 

interactions in a variety of natural settings.  

First, images produced by thermal cameras are independent 

of illumination and are far less susceptible to changes in 

light intensity than traditional RGB cameras or many IR-

based depth cameras. RGB cameras do not work well in 

low-light scenarios, and obviously fail in complete dark-

ness. Since thermal sensing works independently of the 

visible light spectrum, it works equally well in low- and no-

light situations as it would under normal indoor lighting. 
Furthermore, thermal sensing works in direct sunlight, 

where some IR depth cameras do not work because their 

own IR illumination source is washed out by the sun. Addi-

tionally, thermal sensing is not confounded by constantly 

changing light sources and therefore can be used with pro-

jected systems without any special considerations. 

Second, thermal sensing can detect unique features includ-

ing short-lived heat transfer from one object to another, 
which are undetectable with traditional RGB and depth 

cameras. These features can be used to support a variety of 

user interaction techniques (Figure 3). For example, using 

the heat transferred from a user’s hand to the surface, mul-
tiple touch points can easily be extracted as well as compli-

cated gesture shapes. Moreover, the amount of heat transfer 

between the finger and the surface can indicate the pressure

with which the user touched or grasped the object or sur-

face. Lastly, since the transferred heat dissipates over time, 

a history of a user’s interactions is captured in the form of 

residual heat traces even after the interaction is done. 

Third, thermal imaging provides a distinct mechanism for 

easily segmenting hands (or other body parts) from the 

background and is independent of scene complexity, colors, 

and textures (i.e., it easily distinguishes heat-generating 

sources from inert objects, surfaces, and backgrounds). 

Traditional RGB sensing and algorithms rely upon comput-

er vision techniques such as background subtraction, color 

and texture matching, contour detection, and/or optical flow 
to find target objects of interest. However, many of these 

features fluctuate due to changes in illumination, pose or 

position, and color (e.g., a person wears different clothes or 

color differences between skin tones). These fluctuations 

often make it difficult to reliably segment a person from a 

scene, an object from the hand that grasps it, or gestures 

from a scene or surface. Moreover, “warm object” segmen-

Figure 2: Infrared and visible light spectrum. Thermal 

imaging operates in the far-infrared (F-IR) band.
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tation can be done easily on a real-time, frame by frame 
basis using well known thresholding methods, such as 

Otsu's method [24]. Since thermal sensing only needs a 

single frame for segmentation (i.e., no background image or 

motion from previous frame), pose and motion issues are 

less significant than in RGB or depth based systems.    

In summary, we believe that thermal imaging provides the 

following added benefits over traditional imaging: 

� Thermal imaging works independently of the light 

source and is robust to dark or sunlit environments 

� Heat traces left behind enable accurate determination 

of hovering vs. touching without requiring under-

mounted cameras or an instrumented surface Heat 

signatures allow for pressure-aware interaction 

� The heat signatures of individual hands allow for 

multi-touch and multi-user discrimination  

� Segmentation of people and body parts is significant-

ly easier and faster than traditional RGB or depth 

RELATED WORK 

We organize the related work into three broad sections: (i) 

surface and gesture interaction which uses instrumented 

surfaces, involving traditional, depth, and thermal cameras, 

(ii) prior work using traditional IR sensing in the HCI 

community, and (iii) the use of thermal imaging in other 

areas of research.  

Surface and Gesture Interaction 

Camera-based gesture and touch detection in prior work can 

be roughly categorized by the type of camera sensor used: 

RGB, depth, and thermal. To enable multi-touch interfaces 

using RGB cameras [4, 12, 37] there has been substantial 

work in image segmentation that tracks and identifies vari-

ous body parts [20]. Typically these systems use skin color 
matching, edge or contour detection, and motion tracking to 

segment fingers and hands [12]. More recently, N-IR depth 

cameras have also been applied alone or in concert with 

RGB for gesture detection and tracking [2, 8, 11, 22, 34].  

Using thermal imaging, some of the initial interaction work 

comes from Iwai and Sato [9, 10]. They use a behind-the-

surface thermal camera and rear projection for drawing 

upon a translucent paper surface. Users can draw with 
warm or cool objects in contact with the paper (such as 

their hands, warm water, or a hairdryer). The application 
deals primarily with interactive painting on a special paper, 

but does not investigate the problem of hand segmentation, 

tracking, or gesture recognition.  

The work of Oka et al. [23] and Sato et al. [31] combines 

RGB and thermal imaging for hand segmentation and fin-

gertip tracking to drive a gesture recognizer. They use the 

trajectory of extracted finger tips as input to a hidden Mar-

kov model to identify one of six different gestures. The 
method used does not detect finger contact with the surface, 

but instead makes use of the fingertip motion (whether 

touching a surface or in-air). The authors note that their 

system lags when more than one hand is used, and that their 

methodology may not scale well beyond tracking a few 

finger tips. Even so, they are able to use extracted fingertips 

and in-air gestures to drive an overhead projected user in-

terface. Such a system, combined with the system we pro-
pose, could provide a pervasive vocabulary for in-air and 

touch gesturing. 

Beyond tracking fingertips, previous work in RGB and 

depth imaging has attempted to identify touch pressure (for 
example, using finger deformation and changes in the cuti-

cle coloring to infer how hard a finger is pressing on a sur-

face [21]). With thermal imaging one can use not only the 

shape deformation of the finger but also the size and heat of 

the touch spot left behind to infer the pressure a user exerts 

on a surface (as we describe later). 

Traditional IR Sensing in HCI 

Aside from depth cameras, IR sensing (using N-IR) is a 

popular technique for surface and gesture-based interaction 
[8, 22, 34]. The advantage of N-IR imaging is the ability to 

use commodity cameras as the sensor. IR-based sensing 

typically requires an external illumination source, which 

dictates its range. A number of projects in the HCI commu-

nity have used IR for tabletop interaction by detecting hand 

gestures using an under mounted camera and illumination 

source [8, 22]. Others have employed a similar approach on 

vertical semi-transparent surfaces [11].  

IR sensing has also been used for fingertip detection and 

gaze tracking because the retro-reflective properties of the-

se objects allow IR-filtered cameras to easily discern their 

appearance [32]. Others have used structured IR light pat-

Figure 3: Top down thermal camera views of several surface interactions. Detected heat trails are shown in blue from our real-

time algorithm from a single frame of video. Detected pressure differences classified by our real-time algorithm are shown using 

darkness of blue shades. 
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terns for object tracking applications [18]. As we have 

pointed out, IR imaging differs from thermal imaging; 

however, many of the computer vision techniques used in 

IR-based solutions parallel those that would be used in 

thermal imaging with minimal modification. The added 

value of thermal imaging is its ability to passively discern 
objects in view without an illumination source in addition 

to the hysteretic information it offers. 

F-IR Thermal Imaging 

Thermal imaging has largely been used for military and 

surveillance applications [36], where the heat signature 

produced by the human body is used to track individuals in 

arbitrary environments and conditions. Thermal imaging 

has also been used in hospitals and border crossings to iden-

tify individuals with a fever within a crowd of people using 

face temperatures [30]. 

The miniaturization and decreasing costs of thermal imag-

ing cameras have more recently enabled a number of civil-

ian applications. For example, in energy audits air filtration 

and insulation problems can be quickly identified by scan-

ning the indoor space. Home inspectors have also extended 

the use of thermal imaging to look for hot spots near the 

electrical infrastructure to uncover potential arcing prob-

lems or overloaded circuits. Thermal scans of circuit boards 

can identify potential failure points from heat dissipation 

problems. The automotive industry has also used thermal 

imaging for similar applications, especially when tempera-

ture analysis needs to be conducted at a safe distance.  

Beyond its commercial use, researchers have looked at us-
ing thermal imaging for a number of affective computing 

applications, such as detecting and classifying anxiety 

based on the minute changes in the thermal signature of 

one’s face [13, 14, 25, 26]. Using well known techniques 
from the medical literature, changes in anxiety can be corre-

lated to the blood flow on various parts of the face, such as 
at the forehead and cheeks. Others have extended the use of 

thermal imaging to infer emotional states exhibited by indi-

viduals and have used that information to enhance a user’s 

gaming experience by altering a game’s difficulty based on 

these sensed parameters [38]. Thermal imaging has also 

been used for illumination-invariant facial recognition [16].  

HARDWARE 

There are currently a variety of thermal cameras commer-

cially available, and their cost varies based on the required 

thermal sensitivity and resolution. For instance, at the time 

of publication, thermal imaging cameras with super-cooled, 

sealed components that “see through walls” such as those 

used by law enforcement, cost just under 100,000 USD. 

HVAC auditing and general purpose thermal cameras are 
currently around 5,000 USD–which was the price of depth 

cameras less than one year ago (mass production of depth 

cameras for home gaming systems has recently decreased 

their cost significantly). As thermal sensing also gains pop-

ularity, the capabilities of these devices will surely increase 

while the costs decrease.  

For our experimentation, we used the RazIR NANO, which 

contains an un-cooled Focal Plane Array (FPA) micro-

bolometer sensor with 160x120 pixel resolution [28]. The 

thermal sensor is tuned for wavelengths in the IR spectrum 

between 8 and 14 µm, and captures data at a maximum rate 

of 30 frames per second. As an artifact of the sensor, the 
thermal values captured from an object of fixed temperature 

will drift slightly over time, and therefore a periodic re-

calibration is required. We developed software to remove 

the effects of this drift in real-time, as described later.  

Although the RazIR NANO thermal camera has an on-

screen user interface and can perform some signal pro-

cessing on-board, we have done all processing on an exter-

nal computer using a data feed over USB. The data collect-
ed from the feed represents the raw values from the cam-

era’s analog-to-digital converter. Our algorithms operate in 

real-time on the 8 most significant bits of the raw data. 

SOFTWARE IMPLEMENTATION 

Thermal imaging has many potential applications when 

used independently or in conjunction with other sensors 

such as RGB and depth. In this work, we have focused on 

developing software for one of the more interesting and 

unique aspect of thermal imaging: the detection and extrac-

tion of heat traces.  Heat traces are the residual heat left 

behind on a surface due to the heating of that surface by 

another warmer object, such as a human hand. Since tradi-

tional RGB and depth cameras cannot see signals like heat 

traces, there has been no other work in developing software 
to extract such features. This section describes our ap-
proach, using Open CV [3] on streaming thermal imaging 

data and demonstrates how these features can be robustly 

extracted in real-time using standard computer vision algo-

rithms. Figure 4 shows the step by step processing of the 
algorithms with callout images for each process.  

Noise Filtering 

The raw thermal images returned from our camera are fairly 

noisy from the thermal and scattering noise around the mi-

cro-bolometer sensors in the camera. To suppress this noise 

we apply smoothing in both the spatial and temporal do-

mains. We first apply a 5 pixel by 5 pixel median filter 

within each video frame. Then, for each pixel, we apply a 5 

frame low-pass, finite impulse response (FIR) filter to 
smooth the signal in time.  

Background Calibration 

In order to accurately detect heat traces, it is extremely im-

portant to model the background signal level–there is slight 

drift in the hardware sensor over time and surface tempera-

tures may change over time. For these reasons, we compute 

the mean background image dynamically (a moving aver-

age filter) whenever we detect that a human hand is not 

present in the image.  

Hand Segmentation 

In order to segment the hand from the image in real-time, 

we use Otsu's method of thresholding [24]. In this ap-

proach, second order statistics of the gray-level histogram 
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are used to maximize the separation of pixel gray levels 
between two classes. This is ideal in thermal sensing be-

cause a hand's temperature is almost always distinct from 

the background, even when the background temperature is 

not uniform or has temporarily changed due to touching. 
This type of thresholding is widely used in computer vision 

applications and is highly optimized. For our image resolu-

tion, the operation takes a fraction of a millisecond. An 
example of segmentation is shown in Figure 4. 

Fingertip Extraction 

We use the segmented image of the hand together with well 

known morphology operations to extract multiple fingertips 

in a scene. We first apply a thinning operation to the binary 

segmented image, resulting in a skeletization of the fingers. 

We then iteratively apply a hit-and-miss transform to the 

image with a rotating, 3x3 structuring element of endpoints 

at each possible angle. The result tells us the endpoints of 

each finger. The simplicity of this extraction technique is 

made possible by the robust segmentation that thermal sens-

ing provides. Ako et al. [23] use a more complicated form 

of fingertip extraction that also accounts for trajectory. 
However, we found endpoint extraction to be efficient and 

robust, especially because we only use the extracted finger-

tips for refining the search space in which we look for heat 

traces. This type of extraction is difficult using depth cam-

eras because “thinning” is sensitive to the outline of the 

segmented object. Depth cameras tend to be noisy around 

the edges of a hand (where thermal is not) and may require 

further de-noising before finger extraction is possible. An 

example of fingertip extraction is shown in Figure 4. 

Uncalibrated Heat Trace Detection 

A heat trace is created when an object warmer than the 
background surface heats the surface enough to leave evi-

dence of its presence. Over time, this heat trace will disap-

pear and the surface returns to the background temperature. 

Figure 4 shows smoothed data in which the background has 

been subtracted and identifies the region corresponding to 
the heat decay. When the finger simply hovers over the 

surface, there is no heat transfer or decay, but when the 

finger touches the surface the heat decay is very distinctive. 

We constrain our search space by "ANDing" together hand 

segmentations within the past one second of video (30 

frames) and subtracting the current hand segmentation. In 

this way, we only look for heat traces in pixel locations 
where the hand has recently traveled. This reduces the 

search space significantly, and thus drastically decreases 

computational complexity. 

We frame the detection of heat traces as a Bayesian estima-

tion problem. In particular, we observe the likelihood of a 

pixel being part of a heat trace given three features: 

smoothed temperature, temporal derivative, and back-

ground subtracted temperature. The temporally smoothed 
temperature and derivative are calculated over five frames 

using FIR filters. This 5-frame buffering results in a system 

latency of 166 ms (1/6th of a second), which can be consid-

ered real-time for most interactive applications. 

The likelihood distributions are assumed i.i.d. and assumed 
to follow a Rayleigh distribution based on empirical obser-

vations. That is, each feature is modeled well using a distri-
bution with a single tail and the product of all these distri-

butions is a good model of the overall posterior heat trace 
probability. Prior distributions are assumed to be uniform. 

Mathematically this is denoted, 

���� � 1�xxxx	 ∝���,� ���
�� �����,������/����

�∈�
where hp denotes whether pixel “p” is or is not a heat trace, 

xp,f  denotes the value of feature “f” at pixel “p.” F is the set 

of all features. Each feature variance and mean threshold, σf 

and μf, are selected empirically using histograms of collect-

ed heat traces. When the probability of a pixel being a heat 
trace, P(hp|x), surpasses a global threshold, we classify the 

pixel as a heat trace. We found this single model to work 

well for a variety of surfaces and users (i.e., an out of the 

box working system).  

In addition, we allow the system to be calibrated and 

adapted to each user or surface. Unlike the Bayesian sys-

tem, the calibrated system attempts to classify heat traces 

into more than one class based on the pressure with which 
the user pressed on the surface (i.e., the amount of heat 

transferred to the surface).  

Figure 4: Flow diagram for real-time algorithm processes 

with callout images at each step. All callouts are captured 

and rendered from actual data in a real-time application.  
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Calibrated Heat Trace Classification 

The calibration process consists of three stages. During 

each stage the user “draws” a line on the surface at increas-

ing pressures. We save features (temperature, derivative, 
background subtracted temperature, and background tem-

perature) around the trajectory of the moving fingertip us-

ing the Bayesian estimate to extract pixels that are part of a 

heat trace. In this way, the Bayesian estimate is used to 

bootstrap the training of a more complicated classifier. This 
is done for each pressure the user wishes to calibrate. For 

example, these steps can be repeated for “light”, “moder-

ate”, and “hard” pressure stroke calibration. 

We then train the system to identify the pressure of each 

heat trace using a C4.5 tree classifier [27], as implemented 

by Weka [35] (training is less than one second, on average). 

We found a number of algorithms implemented in Weka to 
perform well on a test set of 20,000 detected heat trace pix-

els. We chose the tree classifier because it provided 96% 

accuracy on a 10-fold cross validation of the test set and 

runs quickly enough to assess pressure in real-time. The test 

set had five classes: High, medium, and low pressure, hand 

and background.  

In addition to pressure, this method can be used to calibrate 

to different surfaces. To test this hypothesis, we calibrated 
to four different materials and asked a user to trace a fixed 

projected “S” eight times on each of the four materials (32 

strokes). After the experiment, we superimposed the detect-

ed traces on top of each other for each material, resulting in 

a set of images where brightness denotes how often a heat 
trace was detected on the material surface. Drawing speed, 

temperature of the finger, hand and surface were not con-

trolled (similar to what one would expect in real use). The 

superimposed image results are shown in Figure 5. Bright-
ness denotes classification accuracy: bright yellow is 100% 

correct and completely black (false negatives) is 0% detec-
tion. There were no false positives detected. Notice that 

paper (best), table top laminate (second best), and wooden 

surfaces have easily detectable traces, and that plastic is the 

most difficult surface to detect traces upon. Based on this 

initial evaluation, we hypothesize that less heat is trans-

ferred to the plastic than other materials. 

Line Detection 

Although heat trace detection can be used to detect arbitrary 

shapes and gesture patterns, it is useful to detect when heat 

traces are collinear. We focus on lines because detected 

lines can be used for chording style gestures and as input to 

many applications such as marking menus. To detect line 

gestures we buffer detected heat traces into a single image 

for the past one second. We then apply a binary Hough 
transform [6] to the buffered image to reveal heat traces that 

are collinear. The buffered image provides a binary history 

of where a user has placed ink strokes with their hands and 

can be used with other transformations to fit arbitrary 

curves and circles, not just lines.  

PROTOTYPES AND INTERACTION TECHNIQUES 

To test the usefulness of thermal features as driving input 

for user interfaces, we built two prototype applications. 

Each application uses an overhead projection system and an 

overhead-mounted thermal camera to transform an arbitrary 

surface into a multi-touch user interface (see Figure 6).  

The system ports easily to different tables and other flat 

surfaces. Conversion from camera coordinates and project-

ed coordinates is achieved using a four point calibrated 

homographic transform (i.e., a known mapping of four 

points in each space). No other instrumentation is necessary 

and the camera and projector can be placed at many differ-
ent orientations to the surface and each other.  

The first application is a multi-user and multi-touch draw-

ing application that displays arbitrary gestures made by the 

users, and alters the brightness of displayed colors based on 
the pressure with which each user draws using three pres-

sure levels. The second application uses line gestures for 

image manipulation. Images are chosen using marking 

menus [17], then once the images are displayed they can be 

translated, rotated, and scaled using thermal lines. The two 

applications are designed to demonstrate that thermal traces 

can be used as a plausible substitute for multi-touch screens 

and can drive typical user interfaces in real-time with natu-
ralistic interactions. Images from interactions with each 

application can be seen in Figure 6. 

User Interface Engine  

For the drawing application no additional feature pro-

cessing is necessary—it uses the unaltered heat trace loca-

tions and their corresponding pressure as the sole driving 

inputs. The touch positions are projected onto the surface, 

with their brightness representing applied pressure.  

The marking menu and image editing application uses the 

extracted fingertip locations and heat traces (as detected by 
the Hough transform) as driving input. The steadiness of the 

fingertip is used to detect finger-down events. When a de-

tected fingertip has been stationary for 500 ms, a marking 

menu is displayed at the fingertip location. After this, a 

Figure 5: Heat traces (overlaid images) from a user tracing 

the letter S eight times on each of four materials. Each trial’s 

detected heat trace is projected and overlaid on the previous 

trial. Brightness denotes accuracy.  
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series of lines can be drawn by the user. The angle of the 

detected lines controls which sub-menu is displayed and the 

subsequent selections. As with any marking menu, the user 

can draw a line and pause to bring up another menu or, al-

ternatively, can draw multiple lines in a single motion to 

navigate several menus at once. Once the user selects an 

image to open, they can move and scale the image using a 

combination of one, two, and three finger gestures. The 

interactions are: a single line drawn on the image translates 
the image; two fingers moving inward or outward from the 
image scales it; and three fingers in a sweeping motion 

dismisses the image from the surface.  

We found these inputs and extraction methods to be easily 

implemented and the applications were straightforward 

additions to the system. The prototype applications provide 

proof of concept for systems that detect and use arbitrary 

gestures—using nothing more than a binary Hough trans-
forms on detected heat traces and simple fingertip tracking.  

DISCUSSION AND ANALYSIS 

Although thermal imaging provides a number of advantages 

over traditional RGB and depth imaging solutions, there are 

clearly some differences and challenges. Many of the 

challenges with thermal imaging, such as reflection and 

occlusions have analogous problems in RGB and depth 

imaging, but there are also challenges that are unique to 

thermal imaging, such as surface temperature and material 

type. Additionally, applications driven by heat traces must 

be designed to minimize the effects of these limitations, but 

still provide an intuituve interface.  

Robustness of Algorithm 

In addition to the Bayesian estimation and the calibrated 

classifier described in this paper, we experimented with 

several additional methods for extracting the heat traces 
from a surface. These methods included temperature 

thresholding, change in temperature thresholding, decay 

template matching, hidden Markov models (HMMs), and 

non-probabilistic finite state machines. All of these 

algorithms could be tuned to work quite well in specific 

situations, but none of them were able to work well over a 

wide range of scenarios (with the exception of the HMM, 
which worked extremely well but was computationally too 

intensive to run in real-time without optmization or 

parallelization). The Bayesian approach described in this 

paper appears to be highly robust, and works well for all of 

the scenarios that we have tested. In addition, the approach 

can be used to as a bootstrap for more complicated 

classifiers like the C4.5 trees implemented in this paper.  

Robustness of Features 

During our examination of thermal imaging, we determined 

that the residual heat traces after touching a surface provide 

significant value for differentiating between hovering and 

touching, which is clearly a challenge for top mounted RGB 

cameras and can be problematic with depth cameras (e.g., 

noisy data due to light, reflections, or depth sensor 
resolution). However, two factors impact the decay rate and 

hence ease of detection for heat traces: material type and 

dwell time. Decay rate varies greatly depending upon the 

surface material (from a few hundred milliseconds up to 

five or six seconds) but can be addressed using the 

calibration sequence presented. Wooden and drywall 

surfaces exhibit the slowest decay rates due to their thermal 

properties and, thus, are the easiest materials to classify 

heat traces upon. On the other hand, metal surfaces exhibit 
the fastest thermal dissipation, with traces typically 

disappearing after only a few frames. This confounds our 
algorithm in many scenarios and we still consider metal 

surface heat trace extraction to be an open problem.   

Additionally, the dwell time (i.e., how long surface contact 

lasts) impacts the amount of heat transfer and the size of the 

heated region (heat spreads). For many gesture based 

interactions, dwell time is not significant; however, one can 

easily imagine gestural vocabularies or situations where this 

would need to be taken into account. Our interaction 
techniques thus far have been fairly independent of dwell 

time - that is, most gestures only require the user to press 

the surface quickly. However, extracting reliable pressure 

estimates becomes more difficult with gestures that have a 

large variance in dwell time.  

Challenges Unique to Thermal Imaging 

Unlike RGB and depth cameras, the computer vision 

algorithms for thermal imaging must account for residual 

heat traces that may linger for a significant amount of time. 

Therefore, continually computing/updating the background 

model is important to avoid false positives. Similarly, it is 

possible for the surface to heat up due to the interaction and 

thus make it harder to segment out the hand if the surface 

temperature nears that of the hand, but we found this to be 
extremely rare in our experimentation where the surface 

was at about 20° C. Note that maintaining a background 

model is only important for detecting heat traces. Hand 

Figure 6: Example thermal camera setup with overhead pro-

jector running two prototype applications. 
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segmentation and tracking remains robust in a variety of 

environments and backgrounds.  

Challenges with all Computer Vision Approaches 

Similar to RGB and depth, occlusion is an issue for thermal 
imaging. Since our system relies on the heat traces left by 

finger contact, these traces are only visible when the finger 

moves away from the contact points (i.e., heat traces 

underneath the hand are undetectable). An angle mounted 

camera helps alleviate problems with occlusions when the 
hand covers the heat traces. Furthermore, there is an 

unavoidable delay in the detection of lift (mouse-up) 

events, and it is not possible to detect touch-down (mouse-

down) events. Note that this is distinct from the algorithm 

processing lag of 166 ms. 

An interesting solution to extracting touch-down and touch-

up events with an overhead system is to use a metallic 
surface. Metallic surfaces tend to reflect F-IR waves (i.e., 

you can see thermal reflections on smooth, polished 

surfaces but the reflections are invisible to the user). These 

reflections could be used to indicate hover distance or 

indicate when a surface is touched (i.e., when the reflection 

and object meet, similar to the Wilson “shadow touching 

finger” approach [34]). There is a tradeoff, of course, 

between the reliability of extracting heat traces from 

polished surfaces and touch-down extraction because the 

reflection may be directly over the heat trace. This tradeoff 

is in contrast to depth cameras, which are known to have 

significant problems with shiny or reflective surfaces.  

Limitations in Using Heat Trace Input 

In our ongoing tests of multi-touch thermal drawing inter-
faces, it is rare that parts of the hand are not segmented cor-

rectly or heat traces are not detected. One exception occurs 

when someone with very cold hands uses the system. For 

instance, someone who was holding a cold drink moments 

before interacting. When this occurs, the finger tips are 
about the same temperature as the table top and segmenta-

tion severs a portion of the finger tip. Because we use seg-

mentation to constrain the search space for heat traces, 

some heat traces are missed. Also, after long periods of 

being in contact with the table top (about 5-10 minutes of 

continual interaction) the finger tips begin to cool down and 

the table top begins to heat up, potentially confounding heat 
trace identification. The heating of the surface is magnified 

when many users interact. We found that letting the surface 

cool for about 10-20 seconds is sufficient to reset the back-

ground model and to let the fingertips return to natural tem-

perature (alternatively users can also rub their hands togeth-

er). This suggests for applications that require sustained and 

continuous finger strokes from the user (such as drawing 

and gaming applications) that thermal imaging alone may 

not be appropriate as an input method. Lastly, we found 

occlusion was not a factor for drawing applications because 

users almost always pull their hands away from the surface 
after marking a line or curve to see the visual representa-

tion, revealing the heat trace.  

Our marking menu application was ideally suited for ther-

mal line input and we were able to drive menus with selec-

tions as narrow as 15o fairly easily. Moreover, translation 

and scaling of images is easily interpreted from the detected 

lines in near real-time. The longest delay comes from line 

detection because our algorithm requires buffering of de-
tected heat traces. The buffering process adds an additional 

200 ms delay onto the delay in heat trace detection, result-

ing in an average delay of about 400 ms between drawing a 

line and reaction by the interface. This delay was insignifi-

cant for our example application but could be limiting for 

applications that require faster driving inputs, such as gam-

ing. For image manipulation, one limitation is when the 

user tries to move an image towards the camera because the 

hand moves directly over the heat trace path. One outcome 

of this is that interface feedback may appear “jerky” and 

delayed since we can only process segments of the heat 

trace that are unoccluded. We have anecdotally noticed that 
drawing with an index finger alone tends to naturally offset 

the hand orientation and thus the heat trace is less often 

occluded. More occlusion seems to occur with multi-finger 

chording-style manipulations. More investigation is re-

quired but this does suggest that gesture design choices can 

be optimized to reduce potential problems while preserving 

reasonably intuitive interaction. 

Challenges not Present for Thermal Imaging 

In general, varying lighting conditions did not pose any 

problems in extracting gestures. For instance, we observed 

similar system algorithm behavior across indoor, outdoor, 
and dark environments. This is encouraging since thermal 

imaging may be a viable option for use in arbitrary envi-
ronments. Even more encouraging is that images projected 

on a surface with a digital projector also do not interfere 
with hand/finger segmentation. This is because the IR emit-

ted from the projector’s light source is in the N-IR band, 

and does not extend to the F-IR spectrum. 

ADDITIONAL APPLICATIONS AND FUTURE WORK 

This paper describes our initial exploration of thermal im-

aging as a means for detecting gestural input on surfaces to 

support interaction. We have additionally started investigat-

ing a wider range of possible applications, some of which 

are briefly described below. At present, we have collected 

data to illustrate the viability of each of these ideas. 

Distinguishing Multiple Users 

We have found that multiple users have different thermal 

gradients on their hands (Figure 7a). Although these gradi-

ents can change over long time intervals (e.g., coming in-

side from a winter’s day), we believe the overall hand “heat 
signature” may remain unchanged for the duration of a ses-

sion. Using these thermal differences among the hands of 

multiple users, we believe that we can uniquely identify 

several users within an interactive session. This would al-

low customized multi-user interaction on arbitrary surfaces 

without the need for instrumenting the surface or the users. 

In addition, this algorithm would not use the angle of ap-

proach, enabling users to move freely around the surface. 
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Grip Patterns 

Colleagues in our lab are conducting research in personal 

robotics where a roving robot with a robotic arm can pick 

up, move or manipulate objects. A key element of this work 

is to understand how the robot can best grip everyday ob-

jects. Thermal imaging could help train robots about grip 

methods by identifying the exact positions of contact be-
tween an object and a human hand. The human hand leaves 

heat traces on objects, and these traces clearly show all of 

the points of contact between the object and the hand (Fig-

ure 7b). We plan to apply the thermal image grip patterns as 
a means of training robots how to grasp arbitrary objects. 

Object Interaction 

Similarly to the grip patterns discussed above, thermal im-

aging can be used to determine the points of contact be-

tween objects and any part of the human body. Figure 7c 

shows the heat pattern left in a chair as a result of a person 
sitting. This information can be used to determine elements 

of posture and provide feedback whenever a user stands up.  

Additionally, points of contact could be used to determine 

which chairs, household areas, and objects are used most 
within a space or even when these are used (e.g., eldercare 

or medical rehab applications). 

In-Air Gestures 

Since thermal imaging makes human bodies and body parts 

easily distinguishable from scene elements, we can easily 

detect and track airborne gestures and movements. We plan 

to continue this work, developing real-time algorithms to 

robustly segment and track people and airborne gestures on 

non-planar surfaces, arbitrary objects, and in scenes where 

the user stands in front of the camera. 

Determining Surface Material 

Our current implementation is designed to work on surfaces 

that are made from a variety of materials. We believe that 

thermal imaging can be used to identify the surface material 

based solely on its thermal properties. For example, each 

material will dissipate heat at a different rate, and the spa-
tial spread of the initial heating point will also be different. 

We imagine a system in which the user would simply touch 

the surface (which would likely be part of a training or cali-

bration procedure) and the system would detect and meas-

ure the spatial and temporal properties of the surface. Using 

a database of such parameters, the surface material could 

potentially be determined. This would provide mobile sur-
face interaction systems with additional context regarding 

which surface the user is interacting with. 

Security 

The concept of heat trace detection also has interesting se-

curity ramifications. For instance, thermal heat trace detec-

tion can be used to view a password or bank PIN that a user 

types on a keyboard or keypad. A residual heat trace is left 

behind on the keys even after the password has been en-

tered. Figure 7d shows the heat traces on the keys of an 

actual bank ATM.  

CONCLUSION 

We have described how thermal imaging technology can 

complement or augment more traditional RGB or depth 

cameras for surface gesture interaction. Thermal imaging is 

more robust under circumstances where RGB or depth 

would fail and thus could provide more robust solutions for 
the variability that occurs in natural settings. We have 

demonstrated that well-known computer vision techniques 

can provide good models for extracting the heat traces that 

human interaction with surfaces (and objects) leaves behind 

in real-time. We also demonstrated this approach on a va-

riety of different surfaces and offered a technique for sur-

face calibration. We have demonstrated several traditional 

user interface techniques can be driven in real-time based 

on thermal heat trace input. Finally, we have outlined a 
number of interesting new opportunities beyond gesture-

based surface interactions where thermal imaging provides 

unique data to enable new applications. 
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