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S M A R T  E N E R G Y  S Y S T E M S

I magine an energy feedback system that 
displays not only total power consump-
tion and cost, but also suggests spe-
cific cost-effective measures to improve 
energy efficiency. Such a system could 

report, for example, “Based on your energy con-
sumption patterns, you could save US$360 per 
year by upgrading to a more efficient refrigera-
tor, which would pay for itself after 21 months.” 
The challenge in this scenario is how to sense end 
uses of energy to provide feedback at the indi-
vidual device or appliance level. Emerging smart 

meters promise a tighter tem-
poral coupling between energy 
usage and feedback (down to 
15-minute sampling intervals). 
However, the focus still is on 
aggregate consumption, mak-
ing it difficult for consumers 
to ascertain which devices 
or appliances are responsible 
for their energy usage. Disag-
gregated end-use energy data 
promises to transform the way 
residents, utilities, and policy 

makers think about and understand how energy 
is consumed in the home.

Our research team and many others world-
wide are working toward a new generation of 
electricity, water, and natural gas measurement 
systems that are low cost, easy to install, and 

most important, capable of providing disaggre-
gated data about consumption at the individual 
appliance or device level. Our team’s contribu-
tions are focused on approaches for obtaining 
this disaggregated data from a single sensing 
point. Our vision is to provide high granular-
ity resource-sensing systems for homes and 
businesses that will fundamentally transform 
how electricity, water, and natural gas are un-
derstood, studied, and ultimately consumed. 
This article focuses on electrical energy, but 
we’ve also developed systems for disaggregat-
ing water and gas usage (see the “Water and 
Gas” sidebar). All three of our systems share 
a common approach: they monitor side effects 
of resource usage that are manifest throughout 
a home’s internal electricity, plumbing, or gas 
infrastructure.

Although our techniques should function 
in commercial and industrial sectors, we’ve 
concentrated so far on validating our meth-
ods in the residential sector, which presents 
many challenges. In addition to the significant 
amount of energy use and CO2 emissions in the 
residential sector,1,2 there’s a higher degree of 
decentralized ownership. Also, levels of self-
interest and expertise in reducing energy con-
sumption vary, compared with the industrial 
and commercial sectors. Perhaps more compel-
ling, however, is that energy consumption can 
vary widely from home to home based simply 
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on differences in individual behav-
ior. Indeed, studies have consistently 
found that energy use can differ by two 
to three times among identical homes 
with similar appliances occupied by 
people with similar demographics.3,4

We believe that disaggregated data 

presents an enormous opportunity for 
households to better understand their 
consumption practices, determine easy 
and cost-effective measures to increase 
their energy efficiency, and ultimately 
reduce their overall consumption. Even 
a 10 to 15 percent reduction in elec-

tricity use among homes in the United 
States would be substantial, represent-
ing nearly 200 billion kWh of electric-
ity per year. This reduction would be 
equivalent to the yearly power output 
of 16 nuclear power plants or 81.3 mil-
lion tons of coal. Such statistics have led 

I n addition to sensing disaggregated uses of electrical energy 

from a single point, our lab has also been investigating the 

disaggregation of water and gas consumption using similar ap-

proaches. We rely on conducted pressure waves in the plumb-

ing infrastructure generated as side effects of appliance or fixture 

usage to identify and classify events to their source. The goals 

here are the same: create easy-to-install sensors that provide dis-

aggregated data to better inform residents about their consump-

tion practices and to enhance use models for utilities and policy 

makers.

Like electrical energy, individual behavior also plays a signifi-

cant role in water usage; residential water use accounts for 50 

to 80 percent of public water supply systems and 26 percent of 

total use in the US.1 Although some municipalities have been 

successful in curtailing water use, overall residential water use is 

still increasing in many North American cities.2 In addition, the 

US Environmental Protection Agency estimates that more than 1 

trillion gallons of water are wasted in US households alone (“Fix a 

Leak,” WaterSense; www.epa.gov/watersense/pubs/fixleak.html). 

To better inform residents about their water consumption and to 

provide automatic leak detection, we developed HydroSense, a 

pressure-based sensing solution capable of tracking water usage 

to the fixture level from a single installation point.3 HydroSense 

works by identifying the unique pressure wave signatures gen-

erated when fixtures are opened or closed. This pressure wave 

is propagated throughout the home’s plumbing infrastructure, 

enabling the single-point sensing approach. So far, we’ve tested 

HydroSense in 12 homes and three apartments by performing 

more than 5,000 controlled experimental trials (for example, by 

repeatedly opening and closing each water fixture in the home). 

Our results indicate that we can classify water usage to the indi-

vidual valve level with 70 to 95 percent accuracy.

Unlike electricity and water usage, which often are the result 

of direct human actions such as watching TV or taking a shower, 

gas usage is dominated by automated systems like the furnace 

and water heater. This disconnect between activity and con-

sumption leads to a lack of consumer understanding about how 

gas is used in the home and, in particular, which appliances are 

most responsible for this usage.4 This misunderstanding can 

lead to wasteful behavior (for example, heating empty rooms) 

and using inefficient settings (for example, unreasonably high 

thermostat settings on the hot water heater). Our gas-sensing 

approach uses a single sensor that analyzes the acoustic re-

sponse of a home’s government-mandated gas regulator, which 

provides the unique capability of sensing both the individual 

appliance at which gas is currently being consumed as well as 

an estimate of the amount of gas flow. Our approach provides 

several appealing features, including the ability to be installed 

easily and safely without requiring a professional. We tested our 

solution in nine different homes, and initial results show that 

GasSense has an average accuracy of 95 percent in identifying 

individual appliance usage.5

It’s interesting to note how all three resources are intercon-

nected. One of the largest uses of water is in electricity produc-

tion. For example, to produce one kilowatt-hour of electricity re-

quires 140 liters of water for fossil fuels and 205 liters for nuclear 

power plants.6 Large amounts of energy (both electricity and 

gas) are also used to treat, pump, distribute, and heat water. Our 

energy infrastructure is tied intrinsically to water and vice versa; 

water is used to produce electricity that, in turn, supplies con-

sumable water.
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a growing body of scientists, utilities, 
and regulators to view energy efficiency 
as the most accessible and cost-effective 
form of alternative energy.

The Value  
of Disaggregated Data
Before discussing specific techniques for 
sensing disaggregated energy data, it’s 
useful to highlight why we think this 
level of sensing is valuable to residents, 

utilities, policy makers, and appliance 
manufacturers. With regard to resi-
dents, for example, research in environ-
mental psychology has uncovered some 
profound misconceptions about energy 
usage in the home. In 1982, Barbara 
Mettler-Meibom and B. Wichmann 
interviewed 52 households in Munich, 
West Germany, and asked them to es-
timate the proportional energy cost 
of specific uses.5 They then compared 
these responses to actual usage. Con-
sumers vastly underestimated the en-
ergy used for heating and overestimated 
the energy used for appliances, light-
ing, and cooking. Mark Costanzo and 
colleagues had similar findings.6 Wil-
lett Kempton and Laura Montgomery 
found that consumers often estimate an 
appliance’s energy use by its perceptual 
salience (for example, TV and lighting 
are often overestimated) and overesti-
mate energy used by machines that re-
place manual labor tasks (for example, 
dishwasher, clothes washer).7 Consumer 
estimates of aggregate energy usage are 
also poor. In multiple studies spanning 
a total of 700 people, R. Winett, M. 
Neale, and H. Grier found that only 1 
to 2 percent knew how many kWh they 
used per month or per day; most didn’t 
even know where their electricity meter 
was located.8

These misunderstandings of how en-

ergy is used in the home are reflected 
in the steps that consumers believe they 
can take to conserve it. People tend to 
overestimate the effectiveness of con-
servation measures that depend on 
changes in short-term behavior such 
as turning off the lights when leaving 
a room. They underestimate technical 
or building innovation solutions such as 
deciding to replace an inefficient appli-
ance or upgrading a home’s insulation.7 

Others have shown dramatic misunder-
standings of the benefits of weatheriza-
tion, retrofits, and tax breaks.9 These 
results suggest the need for more ac-
curate and specific information about 
how actions in the home affect energy 
consumption. Disaggregated data could 
be used by energy eco-feedback systems 
to provide both pertinent information 
about energy usage as well as tailored 
feedback at opportune times.10,11 For 
example, an eco-feedback interface 
could provide information about the 
most convenient and cost-effective 
measures to reduce energy consump-
tion based on the specific appliances 
and devices in a home as well as the way 
in which those systems are used. The 
feedback interface might make specific 
recommendations about retrofit solu-
tions and appliance upgrades, or fo-
cus on curtailing particularly wasteful 
behaviors. Disaggregated data could 
also be used to inform residents about 
malfunctioning equipment or ineffi-
cient settings (for example, “the water 
circulation pump appears to be operat-
ing continuously rather than being trig-
gered by a thermostat”).

From a policy perspective, knowing 
how much energy is being consumed 
by each class of appliances or devices is 
critical to the development and evalua-
tion of evidence-based energy-efficiency 

policies and conservation programs di-
rected at reducing capital expenditure 
on additional capacity.12 Disaggregated 
data would enable utilities to accurately 
assess and prioritize energy-saving po-
tentials of retrofit or upgrade programs. 
Equipment manufacturers and govern-
ments could compare energy measure-
ments performed under controlled test 
conditions to measure actual home 
usage conditions. These comparisons 
would result in more realistic test pro-
cedures and, ultimately, more energy-
efficient designs as use cases are better 
understood.

In addition to providing utility com-
panies with an evidence-based method 
of evaluating their own conservation 
programs, disaggregated data pres-
ents opportunities for power system 
planning, load forecasting, new types 
of billing procedures, and the abil-
ity to pinpoint the origins of certain 
customer complaints. For demand re-
sponse, utilities would be able to im-
prove the quality of demand forecasting 
by having better models of usage (for 
example, the number of households 
with energy-efficient air conditioning). 
With real-time eco-feedback displays 
in the home, utilities could also sug-
gest specific appliances to turn off or 
recommend other actions to conserve 
energy during peak load times. Finally, 
although some utilities currently utilize 
different pricing schemes depending on 
usage (for example, tiered pricing based 
on overall usage or time-of-use pricing, 
which is based on the time of day when 
energy usage occurs), future pricing 
models could consider the type of usage 
and charge accordingly. For example, 
heating, ventilation, and air condition-
ing (HVAC), refrigeration, and lighting 
could have different pricing models.

Existing Techniques  
to Measure Disaggregated 
Energy Usage
Field surveys traditionally have pro-
vided the most common approach 
used to acquire details on occupant 
behaviors and appliance penetration 

With real-time eco-feedback displays 	

in the home, utilities could suggest 	

specific appliances to turn off.
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levels.13 Survey data is used for condi-
tional demand analysis (CDA), a mod-
eling technique that attempts to disag-
gregate individual end uses of energy.1 
CDA compares the time-dependent 
load profiles of households with known 
appliances to those without, enabling 
statistical characterization of consump-
tion behavior. CDA accuracy is limited 
because of the diversity of devices and 
appliances in homes and because many 
users share temporal load profiles, 
causing aggregate load profiling to be 
relatively inaccurate. CDA traditionally 
has relied on self-report surveying for 
load disaggregation, which provides a 
relatively sparse dataset that contains 
various self-reporting biases.

In contrast to survey-based methods, 
automated methods for sensing disag-
gregation don’t rely on self-reporting 
and potentially can provide extremely 
rich use datasets. However, no com-
mercially available disaggregation 
method currently exists that’s easily 
deployable, highly accurate, and cost-
effective. There are two primary tech-
niques for automatically measuring 
disaggregated energy usage to the indi-
vidual appliance or device: distributed 
direct sensing and single-point sensing. 
These approaches are differentiated by 
their varying degree of hardware and 
software complexity, whether they re-
quire installation by a homeowner or a 
licensed professional, their calibration 
(or training) requirements, and their 
potential cost.

Distributed Direct Sensing
Distributed direct sensing requires a sen-
sor at each device or appliance to mea-
sure consumption. Although concep-
tually straightforward and potentially 
highly accurate, direct sensing often is 
expensive because of time-consuming 
installation and the requirement for one 
sensor for each device or appliance. In 
addition, appliances that tend to con-
sume the most electricity are frequently 
hard-wired (for example, electric water 
heaters or lighting) or difficult to reach 
(behind a refrigerator or dryer), making 

installation and maintenance difficult 
and costly. Finally, because these sensors 
are distributed in the house, a communi-
cation protocol must be devised that can 
communicate sensor information to a lo-
cal repository using, for example, multi-
hop radio or power-line communication. 
Direct sensors have the potential to both 
sense and control the operation of vari-
ous devices and appliances because they 
can be co-located (for instance, turning 
off a light when an occupant leaves a 
room; see, for example, iControl [www. 
icontrol.com]). This dual capability isn’t 
possible with single-point sensing unless 
the sensing system communicates with 
a distributed control system. An addi-
tional benefit of direct sensors is that the 
calibration process typically requires no 
more than providing a label for each sen-
sor. This label corresponds to the device 
or appliance connected to the sensor.

Single-Point Sensing
In response to limitations with the 
direct sensing approach, researchers 
have explored methods to infer disag-
gregated energy usage through a single 
sensor. Pioneering work in this area is 
nonintrusive load monitoring (NILM), 
first introduced by George Hart in the 
1980s.14 In contrast to direct sens-
ing methods, NILM relies solely on 
single-point measurements of voltage 

and current on the power feed enter-
ing the household. NILM consists of 
three steps: feature extraction, event 
detection, and event classification. 
The raw current and voltage wave-
forms are transformed into a feature 
vector—a more compact and mean-
ingful representation that might in-
clude real power, reactive power, and 
harmonics. These extracted features 
are monitored for changes, identified 

as events (for example, an appliance 
turning on or off), and classified to the 
appliance or device category level. A 
pattern recognition algorithm is used 
for classification, which compares the 
features to a preexisting database of 
signatures. In its simplest form, the 
NILM feature vector can contain only 
one value, a step change in measured 
power to disambiguate between de-
vices. More advanced NILM features 
can contain measures of power differ-
entiated by frequency and temporal 
patterns.15 Leveraging recent advances 
in device and appliance power supplies, 
our lab has extended the NILM ap-
proach for electrical disaggregation by 
using high-frequency sampling of volt-
age noise.16,17 Voltage noise provides 
an additional feature vector that can 
be used to distinguish more accurately 
between energy usage signatures that 
would otherwise appear very similar.

Most single-point sensing ap-
proaches rely on pattern matching, 
which presupposes the existence of a 
database of appliance and device usage 
signatures. For example, Mario Berges 
and colleagues18,19 and M. Roberts 
and H. Kuhns20 are investigating how 
to build databases of these signatures 
for the NILM architecture. In the ideal 
case, these signatures would be similar 
among homes and could be preloaded 

on the sensing device or uploaded and 
examined in the cloud. In the worst 
case, however, a training example of 
each appliance or device must be pro-
duced per home, which would greatly 
increase installation complexity.

Intermediate Sensing Methods
Some sensing systems function some-
where between direct and single-point 
sensing. Smart breaker devices, such 

An additional benefit of direct sensors is that 

the calibration process typically requires no more 

than providing a label for each sensor.
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TABLE 1. The various features, algorithms, and technologies used to disaggregate use energy data  
from single-point sensors. The AC subscript indicates that features were extracted using only the 60-Hz component.

Extractable  
features

Comparison  
criteria

Real/ 
reactive 
power 
(watts  
vs. VARs)

Apparent 
power  
from |IAC|

Harmonics 
of |IAC|

Startup  
of IAC |VAC|

Transient 
voltage noise  
signature

Continuous  
voltage 
noise  
signature

Sensing  
hardware

Smart meters 
capable of 
medium-rate 
sampling

Current 
clamps or 
inductive 	
sensors 

Current 
clamps or 
ammeters

Current clamps 
or ammeters

Voltmeter High-sampling-
rate voltmeter

Medium-	
sampling-	
rate voltmeter

Disaggrega-
tion level

Device	
category

Large load 	
category 

Large load 	
category

Large load 	
category

Large load 
startup 
detection

Individual 
devices with 
mechanical 
switches

Individual 
devices 	
utilizing SMPS, 
or other 	
electronic 	
load controls

Example 
devices that 
can be disag-
gregated

Fans, motors, 
HVAC 	
systems, 
forced air 
heaters

Stove, dryer, 
electric 	
heaters

Fans, dryers, 
compressors

CFLs, motors Motor appli-
ances, dryers, 
electric 	
heaters

Any switched 
load 

Continu-
ously switched 
devices: CFLs, 
TVs, DVD 	
players, 	
charging units

Algorithm Clustering of 
watts 	
and VARs

Step change 	
in magnitude

Magnitude 	
of harmonics

Pattern 	
matching 	
of startup 	
transients

Magnitude Pattern 	
matching 	
on transient 
pulses

Pattern match-
ing on features 
of resonant 
frequency

Installation Breaker or 
meter: inline 
ammeter with 
voltmeter

Breaker or 
meter: inline 
ammeter, or 
affixed outside 

Breaker or 
meter: in line, 
or affixed 	
outside

Breaker or 
meter: in line, 
or affixed 	
outside

Plug-in 	
anywhere

Plug-in 	
anywhere

Plug-in 	
anywhere

Ease of  
physical 
installation 
excluding 
calibration

Very difficult Current 
clamps: 	
difficult; 
inductive 	
sensors: easy

Difficult Difficult Very easy Very easy Very easy

Ease of  
calibration

Very easy Difficult Difficult Easy Very difficult Easy Very easy

Cost (includ-
ing cost of 
installation)

Very high Low Medium Medium Very low Very high High

Advantages Automatic 
categoriza-
tion of certain 
loads, works 
well for 	
appliances

Simple, 
enables cen-
tral database 
of signatures, 
reduces 	
per-home 	
calibration

Discriminates 
among 	
devices 	
with similar 
current draw

Discriminates 
among devices 
with similar 
current draw 
and startup

Simplicity 
and cost

Nearly every 
device has 
observable 
signature, 
independent of 
load character-
istics

Stable signa-
tures among 
homes and 
devices, inde-
pendent of 
load charac-
teristics

Limitations I and V must 
be sampled 
synchronous-
ly, few devices 
with diverse 
power factor

Few devices 
with diverse 
power draws

Limited to 
large induc-
tive loads that 
distort AC line, 
loads must be 
synchronous 
to 60 Hz

Limited to 
loads with 
diverse, long 
duration start-
up characteris-
tics like motors 
and some CFLs

Few devices 
affect 	
VAC line, 	
susceptible 	
to line 	
variations

Requires 	
per-home 
calibration, 
requires fast 
sampling 	
(1–100 MHz)

Requires 	
medium 	
sampling rate 
(50–500 kHz)
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as the Powerhouse Dynamics eMoni-
tor (www.powerhousedynamics.com), 
are installed by an electrician inside a 
home’s circuit breaker panel to provide 
a circuit-by-circuit analysis of energy 
consumption. Depending on the design 
of a home’s circuit layout, each circuit 
might feed only one appliance. So, an 
approach like that of eMonitor could 
be used to acquire use consumption 
data. If multiple devices or appliances 
share a circuit, the smart breaker ap-
proach doesn’t offer use disaggrega-
tion at the individual appliance or de-
vice level. Multiple-sensor approaches 
often are cost prohibitive, especially 
when the cost of professional installa-
tion is included.

Observable Features 
for Single-Point Energy 
Disaggregation
Single-point sensing has advantages 
over direct sensing in terms of cost, 
ease of installation, and overall intru-
siveness. However, single-point sens-
ing is limited fundamentally by the 
amount and quality of information that 
can be sensed from a single point in the 
home’s electrical infrastructure. The 
approaches to appliance- and device-
level use monitoring can be subdivided 
into three groups: approaches based on 
aggregate power consumption, current 
consumption and startup character-
istics, and voltage signatures. Table 1 
provides a complete summary.

Approaches Based  
on Aggregate Power Consumption
Perhaps the most obvious starting point 
to discriminate automatically between 
devices is to use the total power con-
sumed by each device. As different de-
vices tend to draw different amounts of 
power, and these power draws tend to 
be consistent over time, total power is a 
reasonable feature to use for classifica-
tion (for example, a lamp typically uses 
less than an iron, which uses less than 
a microwave). Most devices have pre-
dictable current consumption and all 
are comprised of a mixture of resistive 

and reactive components, which are 
expressed as real or true power (watts) 
and reactive power (volt-ampere reac-
tive, or VAR). Many devices can be cat-
egorized according to the magnitude of 
watts and VARs consumed (see Figure 
1). For example, a refrigerator might 
consume 400 10 W and 450 20 
VARs. This approach, commonly re-
ferred to as load monitoring, was used 
originally to categorize high-power de-
vices, such as refrigerators and HVAC 
systems.21 However, load monitoring is 
more difficult to apply to devices that 
consume little instantaneous power 
such as radios and small fans because 
the overlap in the feature space is con-
siderable.14 It’s also important to note 
that although load monitoring catego-
rizes devices, it can’t disaggregate two 
similar devices in the same home (such 
as lights in separate rooms).

A significant disadvantage of this 
method is the need to install sens-
ing components that are capable of 
measuring watts and VARs. Measur-
ing real and reactive power requires 
knowing the phase angle between the 

main-line AC voltage and current. 
This measurement requires that a sys-
tem synchronously sample the voltage 
(VAC) and current (IAC) waveforms ei-
ther at the meter or directly before the 
breaker box. Most commonly, clamp-
type current transformers measure IAC 
indirectly. Building codes typically re-
quire that a licensed electrician install 
these devices. The process involves dis-
mantling the breaker box and clamp-
ing magnetic sensors around the main 
power feed conductors. To gather elec-
trical current features in a consumer-
installable manner, we developed a 
contactless current sensor that can be 
mounted to the outside of the breaker 
box. The sensor infers current from the 
magnetic fields generated by the feed 
conductors inside the box.16 Although 
this configuration eliminates the need 
for professional installation and greatly 
reduces the complexity and safety con-
cerns of the installation procedure, sen-
sor placement and calibration become 
critical for high accuracy. In the future, 
smart meters could provide electrical 
current information, but it’s unclear 
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when this data will be available and 
whether the temporal resolution will 
be sufficient for disaggregation (current 
smart meters are typically configured 
to report consumption data with 15- 
minute granularity).

Approaches Based on  
Current Consumption  
and Startup Characteristics
Synchronously sampling both the volt-
age and current waveforms can add 
considerable cost to the sensing unit 
and installation. Consequently, many 
newer sensing algorithms attempt to 
classify electrical device end use by us-
ing only the magnitude of IAC or the 
magnitude of IAC over long durations 
(on the order of one second) when a de-
vice is first actuated (startup), which 
eliminates the need to sample voltage 
and reduces the sampling rate for the 
current waveform (most designs use ap-
proximately 600-Hz sampling).

Many electrical devices such as heat-
ers, fans, and compressors exhibit cur-
rent waveforms with significant ener-
gies in the 60-Hz harmonics. We can 
find distinct features in the current 
waveforms by isolating each harmonic 
and analyzing the spectral envelope 
over a fixed duration during the device 
startup (typically 100 to 500 ms). A. 
Cole22 and S. Leeb23 were able to use 
these startup features together with 
load monitoring to categorize resi-

dential appliances. These approaches 
usually require some form of tem-
plate matching on a known library of 
startup features to classify unknown 
loads. C. Laughman and colleagues 
showed that this feature space is less 
susceptible to overlapping categories 
and therefore able to separate many 
devices with similar load characteris-
tics compared to approaches based on 
aggregate power consumption.15 For 
example, two motors with similar real 
and reactive power consumption can 
exhibit significantly different startup 
features, making them easy to differen-
tiate. This approach is limited primarily 
to devices that consume large current 
loads, which exert significant har-
monic distortion on the current wave-
form. Even so, some switching mode 
power supply (SMPS) devices exhibit 
continuous harmonic signatures in the 
current waveform (not just distortions 
during startup, but constant signatures 
embedded in each harmonic).24 These 
signatures, however, are modeled more 
effectively using voltage, where the fea-
tures have considerably less overlap.

Approaches Based  
on Voltage Signatures
Using voltage-domain measurement for 
electrical device disaggregation at first 
seems counterintuitive. The incoming 
power feed to a home is often assumed 
to be a well-regulated 60-Hz pure sine 

wave AC source. Of course, this power 
might be true at the point of genera-
tion but not true in a home. Instead, 
appliances conduct a variety of noise 
voltages back onto the home’s power 
wiring. In an attempt to limit interfer-
ence among devices, US Federal Com-
munications Commission (FCC) rules 
restrict the noise voltage that each de-
vice can conduct back onto the power 
line. Researchers have found, however, 
that devices that comply with the FCC’s 
limits still yield measurable noise signa-
tures that are easily detectable using ap-
propriate hardware. These signatures 
occur at a broad range of frequencies, 
not just 60 Hz and its harmonics. Gen 
Marubayashi categorizes three types 
of voltage noise: on-off transient noise, 
steady-state line voltage noise (gen-
erated at 60 Hz and harmonics), and 
steady-state continuous noise (gener-
ated outside 60 Hz).25 Past work on 
electromagnetic compatibility focused 
largely on ensuring that this noise 
doesn’t adversely affect power distri-
bution or interfere with radio or televi-
sion reception. Since 2007, we’ve been 
developing methods for characterizing 
these voltage noise signatures and using 
them to classify the operation of electri-
cal appliances and devices in the home.

An important advantage of voltage 
noise signatures is that any electrical 
outlet inside the home can be used as 
a single installation point because the 
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Figure 2. Spectrogram. (a) Transient voltage noise signatures of a light switch being turned on. Colors indicate amplitude at each 
frequency. (b) Steady-state continuous voltage noise signatures of devices during various periods of operation.
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line voltage is sampled in parallel with 
the incoming AC line. This installation 
contrasts to electrical current sensing 
solutions that require professional in-
stallation of sensors around power feed 
conductors. A second advantage is that, 
unlike both of these approaches, volt-
age noise signatures can be used not 
only to categorize energy usage but 
also to identify the specific source of us-
age. In other words, this approach can 
discern not only that a lightbulb was 
turned on but which lightbulb.

Transient voltage noise signatures. Any 
mechanically switched device, such as 
a light switch, induces a short duration 
(transient) pulse when making or break-
ing an electrical circuit. This pulse is the 
result of a rapid series of switch contact 
openings and closings due to the physi-
cal nature of the switch itself through 
bouncing, sliding, rocking, and surface 
contaminants.26 These contact bounces 
create impulse noise, which typically 
lasts only a few microseconds and con-
sists of a rich spectrum of frequency 
components ranging from a few kHz 
up to 100 MHz. The transient voltage 
noise is filtered by the home’s electrical 
infrastructure (the transmission line’s 
path) and the switch’s internal struc-
ture, so the transient noise generated by 
each switch is unique. This unique tran-
sient noise enables per-device identifica-
tion but usually prevents generalization 
among homes.

Figure 2a shows a spectrogram of a 
light switch being turned on in a home. 
Note the rich spectrum of frequency 
components and the relative strength 
of each frequency component. Through 
empirical observation, we’ve found that 
these transient signatures are relatively 
stable over time.16

Continuous, line-synchronous voltage sig-
natures. Unlike transient voltage noise, 
which is present only for an instant 
when a device is turned on or off, steady-
state noise exists as long as a device is 
powered on. Motor-driven devices such 
as coffee grinders, fans, and hair dryers 

create continuous voltage noise synchro-
nous to the frequency of AC power (60 
Hz in the US) and its harmonics. The 
magnitude of the 60-Hz harmonics can 
be used to detect the presence of large 
motor loads. Given that the steady-state 
noise signal is continuously generated, 
systems utilizing this feature have the 
ability to classify the signal even if the 
device activation/deactivation event is 
missed. So, steady-state signals in some 
ways are more attractive than their tran-
sient counterparts.

Continuous, high-frequency voltage 
signatures. Because of their higher ef-
ficiency, smaller size, and lower cost 
compared to traditional power sup-
plies, an increasing number of devices 
in the home use SMPS. These devices, 
which include laptops, charging units, 
and TVs, exhibit continuous voltage 
signatures at the resonant switching 
frequencies of the SMPS hardware and 
usually are operated in the range of  
5 kHz up to 1 MHz with a bandwidth 
of a few kHz. With the wide variety 
of manufacturing processes and power 
requirements of SMPS devices, there’s 

a minimal amount of overlap in the 
frequency spectrum, making the reso-
nant frequency an attractive feature 
for classification.

A similar switching mode character-
istic is also seen in compact fluorescent 
lights (CFLs) and dimmer switches. A 
CFL power supply uses the same funda-
mental switching mechanism to gener-
ate the high voltages required to power 
the lamp. Dimmers also produce con-
tinuous signatures because of the trig-
gering of their internal TRIAC, which 
can be used to detect and identify the 
incandescent loads that they control. In 
contrast to the narrowband noise pro-
duced by SMPS, a dimmer produces 
broadband noise spanning up to hun-
dreds of kHz.

Figure 2b shows a frequency domain 
waterfall plot indicating a variety of 
devices and appliances. When a de-
vice or appliance is turned on, we see 
a narrow-band continuous noise signa-
ture that lasts for the duration of the 
device’s operation. The excitation of a 
switching device can be considered a 
series of periodic impulses. The electri-
cal lines of the household (the house’s 

Data
acquisition

PC running
data logger

PC running
labeling tool

Power-line
interface module

Figure 3. Prototype. The single-point disaggregated energy-sensing system consists 
of a single plug-in module, acquisition hardware, and the supporting software.
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transfer function) act as filters, affect-
ing the magnitude and bandwidth of 
the resonances and the corresponding 
harmonics. Some features can be gen-
eralized among homes. Others can be 
used in homes to disaggregate similar 
appliances in different rooms or used 
to track the outlet to which a particular 
mobile device is connected.17

Implementing Electrical 
Energy Disaggregation  
Using Voltage Noise
Our prototype voltage noise-based sys-
tem consists of a single custom power-
line interface plug-in module that can 
be plugged into any electrical outlet 
in the home (see Figure 3). The output 
of the plug-in module is connected to 
a high-speed data acquisition system 
that digitizes the analog signal and 
streams it over a USB connection to 
data collection software running on a 
PC. The PC then samples and condi-
tions the incoming signal. Although we 
tested our system on a 120-V, 60-Hz 
electrical infrastructure, our approach 
could easily be applied to an electrical 
infrastructure that utilizes different fre-
quency and voltage ratings with little 
change to the hardware and no change 

to the software. For homes that have 
split-phase wiring (two 120-V branches 
that are 180 degrees out of phase), high-
frequency coupling at the breaker box 
between the two branches typically 
enables us to continue to monitor at a 
single location and capture events oc-
curring on either branch.

To detect and classify the transient 
voltage noise, we utilize a simple sliding 
window algorithm (one microsecond in 
length) to identify substantial changes 
in the input line noise (both beginning 
and end). A real-time signal processing 

system running on the PC creates a fea-
ture vector of frequency components 
and their associated amplitude values 
by performing a fast Fourier trans-
form on the sliding window sample. 
A Euclidean distance measure com-
pares contiguous examples; when the 
distance first exceeds a predetermined 
threshold, the start of the transient is 
marked. The window continues to slide 
until there’s another drastic change in 
the Euclidean distance, which indicates 
the end of the transient. The feature 
vectors that comprise the segmented 
transient are then sent to a support vec-
tor machine (SVM) for classification. 
Note that the SVM must be trained us-
ing three to five labeled transient volt-
age noise signatures from the home in 
which it is to be used.

To detect and classify steady-state 
noise, we also utilize a frequency-based 
analysis. The incoming time domain 
signal stream from the data acquisi-
tion hardware is buffered into 4-ms 
windows. Using Welch’s method,27 we 
create frequency-based feature vectors, 
which then are fed into our event de-
tection and extraction software. When 
the system begins, it creates a snapshot 
of the baseline frequency signature. 

Thereafter, new vectors are subtracted 
from the baseline signature to produce 
a difference vector. Our feature ex-
traction algorithm finds new resonant 
peaks using the difference vector and 
extracts quantities related to center fre-
quency, magnitude, and bandwidth of 
the resonances. We build templates of 
known devices and use nearest neigh-
bor search in Euclidean space to clas-
sify the feature vectors into their source 
device or appliance.

To evaluate the feasibility and ac-
curacy of our approach, we conducted 

several staged experiments on 14 homes 
of varying styles, ages, sizes, and loca-
tions. In two of these homes, we also ex-
amined the temporal stability of voltage 
noise signals by conducting longitudi-
nal deployments. To reduce confound-
ing factors, we performed transient 
and steady-state noise experiments 
independently of each other. For tran-
sient voltage noise analysis, we tested 
our system in one home for six weeks 
and in five homes for one week each to 
evaluate the system performance over 
time and in different types of homes. 
Results indicate that we can learn and 
classify various electrical events with 
accuracies ranging from 80 to 90 per-
cent with recalibration being unneces-
sary even after six weeks of installation. 
We were able to disaggregate events to 
single light switches and were even able 
to distinguish between two different 
switches that had the same load char-
acteristics (for example, both switches 
were connected to a 100-W lightbulb).

We tested the steady-state voltage 
signatures approach in one home for a 
period of six months and in six other 
homes using staged experiments in 
a fixed setting. Results indicate that 
we can classify devices with accura-
cies ranging from 89 to 97 percent in 
individual homes. This classification 
includes the ability to disaggregate the 
same model and brand of LCD televi-
sions in the same home as well as dif-
ferentiate individual CFLs. We also 
investigated the feasibility of using our 
method to train general templates for 
four electrical devices at one home and 
then classify the devices in six other 
homes. In five of the six homes, we 
were able to classify the devices with 
100 percent accuracy, and in the final 
home, we were able to classify three of 
the four devices with 100 percent accu-
racy (the single failure case was a laptop 
power adaptor whose noise character-
istic is dictated by the charging state). 
Unlike transient voltage noise, whose 
characteristics result from a random 
distribution, SMPS steady-state noise is 
predictable between similar hardware 

To evaluate the feasibility of our approach, 	

we conducted several experiments on 14 homes 

of varying styles, ages, sizes, and locations. 
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designs. In a follow-up study, we ac-
quired ten 20-inch Dell LCD monitors 
and created a single noise signature us-
ing one random monitor. We obtained 
near 100 percent classification accuracy 
when using a single learned model to a 
random installation of the nine other 
monitors in the various homes.

Our noise-based approaches enable 
us to identify when and what devices 
or appliances are used. However, these 
approaches don’t provide power con-
sumption data. The last step in our 
approach is to sense changes in whole-
home, aggregate power consumption 
and map these power changes to the 
identified events. Any of the discussed 
current sensing approaches allow for 
this, including those that leverage con-
tactless sensing.28

W e believe that disaggre-
gated energy usage data 
is considerably more 
valuable and actionable 

than aggregate energy usage data at 
the whole-house level. However, sev-
eral open problems must be solved for 
single-point sensing to become a viable 
energy disaggregation sensing method. 
Many of these open problems are well 
suited for investigation by the perva-
sive computing research community, 
including the development of probabi-
listic classification approaches and new 
methods for ground-truth labeling of 
energy usage data, as well as algorithms 
for calibrating and training the sensing 
apparatus itself.

The cost and ease of installation, in-
cluding any required training or cali-
bration, must be considered in terms of 
the likely impact on large-scale adop-
tion of energy disaggregation solutions. 
Although the ease with which a given 
disaggregation device can be physically 
installed is important, the ability for 
that device to function out of the box 
or with a small number of calibration 
steps is perhaps of even greater impor-
tance. We pursued two complementary 
disaggregation approaches that utilize 

fingerprinting for classification—that 
is, a database of labeled signatures must 
exist for the method to perform well. 
The calibration process requires that a 
user walk around the home, activating 
and deactivating each device or appli-
ance at least once (to create an appli-
ance signature) and to provide a famil-

iar human-readable text label for each 
device. Although initially burdensome, 
the calibration process would be per-
formed only once or when a new device 
or appliance is installed. In either case, 
mobile phone software could guide the 
user in this process and serve as an in-
terface for collecting text labels.

Of course, this level of calibration 
is required only if the device or appli-
ance’s disaggregation signature is dif-
ferent among homes. In the case of 
transient voltage noise, we found this 
level of calibration to be required. In 
other words, transient voltage noise 
alone isn’t portable enough to enable a 
shared database of signatures to take 
the place of in situ calibration. In con-
trast, we found that steady-state noise 
signals from SMPS and CFLs have a 
large degree of signal similarity among 
homes and devices.17 This degree of 
signal similarity is likely because these 
signatures are shaped largely by the 
device’s particular circuit design and 
electronic components rather than its 
position on the home’s internal power-
line infrastructure. Given this signal in-
variance, a distributed system based on 
the deployment of single-point sensors 
across many homes could use a crowd 
sourcing approach for signature label-
ing that shares signatures and their la-
bels among homes via a common back-
end database.

Future work could also look at the 
feasibility of automatically clustering 

and classifying unknown signals in an 
unsupervised fashion. That is, an un-
supervised learning system need not 
require a human-labeled database of 
signatures and labels. Instead, such a 
system would learn these signatures 
over time and then acquire the la-
bels later. A carefully designed user 

interface could then present a list of 
these unknown signals to the home
owner and ask for a semantic label. 
For example, the eco-feedback system 
might state, “The second most power- 
consuming appliance in your home has 
yet to be labeled. We think it’s a hot-
water heater. Is this correct?” In this 
way, the calibration effort is amortized 
over a longer time. Roberts and Kuhns 
are in the early stages of evaluating 
their sensing system, which requires no 
a priori knowledge of devices or appli-
ances in the home, nor does the system 
require that each detected device or ap-
pliance exist as a model in its library.20 
Although the sensing system can learn 
unique signals over time, it still requires 
user intervention to provide semantic 
labels for these signals.

In addition to unsupervised learn-
ing, we’re also studying the benefits 
of exploiting contextual cues and 
temporality of device usage (a strat-
egy exploited by CDA). For example, 
many devices have predictable usage 
duration or are commonly used with 
other devices. Many devices also have 
predictable states of electrical usage, 
such as washing machines, dryers, 
and HVAC systems. Dynamic Bayes-
ian networks (DBNs) are well suited to 
exploit this kind of a priori informa-
tion. DBNs also have the added benefit 
of seamlessly integrating multiple fea-
ture streams, such as those measured 
from voltage and current—essentially  

Several open problems must be solved 	

for single-point sensing to become a viable 

energy disaggregation sensing method.
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providing a high-level method to in-
tegrate all the features mentioned 
previously.

Finally, one of the primary research 
challenges in investigating energy  
disaggregation techniques is evalua-
tion. Although computer simulation 
and laboratory-based testing are use-
ful in evaluating an approach’s fea-

sibility, it’s difficult to replicate the 
complexity and nuance of device and 
appliance usage in these artificial envi-
ronments. The problem with in-home 
evaluation is the difficulty of estab-
lishing a method to acquire ground-
truth labeling about when and which 
devices and appliances are used. For 
our own evaluations, we largely re-
lied on manual labeling of electrical 
device activation and deactivations us-
ing staged in-home experiments with 
custom-built labeling software. How-
ever, this approach is labor intensive, 
making it difficult to conduct experi-
ments among a large set of homes. It’s 
also unclear how effectively these con-
trolled activation/deactivations mimic 
naturalistic energy usage. For exam-
ple, some disaggregation techniques 
are affected by the number of appli-
ances or devices that are active simul-
taneously. Such dependencies must be 
reflected in the staged experiments.

The labeling of appliance and device 
usage could be handled by distributed 
direct sensing or hybrid methods that 
monitor power draw on each electri-
cal branch of a home. Here, a sensor 
or a set of sensors is installed at each  
device/appliance location to monitor 
use. An automated validation system 
could use these distributed sensor 
streams to evaluate the single-point 
solution’s efficacy (for example, by 
comparing both outputs). Fully instru-

menting a house with direct sensors on 
each outlet and for each appliance, de-
vice, and hard-wired system (for ex-
ample, lighting) is extremely resource 
intensive both from an installation and 
a maintenance perspective. It’s un-
likely that any preexisting direct sens-
ing system would be capable of pro-
viding per-device usage information, 

so new direct sensors must be custom 
designed, which presents its own chal-
lenges. Finally, system designers must 
ensure that direct sensors don’t distort 
the signal features used by the disag-
gregation algorithms (for example, by 
adding additional noise to the power 
wiring). So, although a direct sensing 
approach clearly would have benefits 
(for example, this approach could be 
used to collect naturalistic ground-
truth data over long periods), major 
challenges remain in making direct 
sensing practical.
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